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As the increased distance between Earth-based mission control and the spacecraft results
in increasing communication delays, small crews cannot take on all functions performed by
ground today, and so vehicles must be more automated to reduce the crew workload for such
missions. In addition, both near-term and future missions will feature significant periods
when crew is not present, meaning the vehicles will need to operate themselves autonomously.
NASA’s Advanced Exploration Systems Program pioneers new approaches for rapidly develop-
ing prototype systems, demonstrating key capabilities, and validating operational concepts for
future humanmissions beyond low-Earth orbit. Under this program, NASA has developed and
demonstrated multiple technologies to enable the autonomous operation of a dormant space
habitat. These technologies included a fault-tolerant avionics architecture, novel spacecraft
power system and power system controller, and autonomy software to control the habitat.

The demonstration involved simulation of the habitat and multiple spacecraft sub-systems
(power storage and distribution, avionics, and air-side life-support) during a multi-day test at
NASA’s Johnson SpaceCenter. The foundation of the demonstrationwas ‘quiescent operations’
of a habitat during a 55 minute eclipse period. For this demonstration, the spacecraft power
distribution system and air-side life support system were simulated at a high level of fidelity;
additional systems were managed, but with lower fidelity operational constraints and system
behavior. Operational constraints for real and simulated loads were developed by analyzing
on-orbit hardware and evaluating future Exploration capable technology. A total of 13 real
and simulated loads were used during the test. Eight scenarios including both nominal and off-
nominal conditions were performed. Over the course of the test, every application performed
its desired functions successfully during the simulated tests. The results will inform both
future tests, as well as provide insight to NASA’s domestic and international partners, as they
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construct the next generation of space habitats to be used on beyond-Earth missions.

ACAWS = Advanced Caution and Warning System
AES = Advanced Exploration Systems
AMPS = AES Modular Power System
APC = Autonomous Power Controller
API = Application Program Interface
CH4 = Methane
CCCA = Common Cabin Air Assembly
CCDD = cFS Command and Data Dictionary
cFS = core Flight System
COTS = Commercial Off The Shelf
CO2 = Carbon Dioxide
DE = Diagnostic Executive
DIM A = Distributed Integrated Modular Architecture
DoD = (Battery) Depth of Discharge
DS = Data Store
DS_REPL AY = Data Store Replay
ECLSS = Environmental Control and Life Support Systems
EV A = Extra-Vehicular Activity
E XP = Expediting Processing of Experiment for the Space Station Rack
FC = Flight Computer
FD = Fault Detector
FIR = Fault Impacts Reasoner
FPGA = Field Programmable Gate Array
HyDE = Hybrid Diagnosis Engine
H2 = Hydrogen
iPAS = Integrated Power Avionics and Software
Kw = Kilowatt
KwH = Kilowatt-Hours
LOP − G = Lunar Outpost-Gateway
L AN = Local Area Network
LC = Limit Checker
L1V = Level 1 Voter
MBSE = Model-Based Systems Engineering
MBSU = Main Bus Switching Unit
N ASA = National Aeronautics and Space Administration
OGA = Oxygen Generation Assembly
OSAL = Operating System Abstraction Layer
O2 = Oxygen
PDU = Power Distribution Unit
PLE XIL = Plan Execution Interchange Language
PPA = Plasma Pyrolysis Assembly
PPE = Power-Propulsion Element
PW D = Potable Water Dispenser
RIU = Remote Interface Unit
RPC = Remote Power Controller
SAB = Sabatier Reactor
SAM = Spacecraft Atmosphere Monitor
SBN = Software Bus Network
SBN − LIB = Software Bus Network Library
SCH − TT = Scheduler - Time Triggered
SCIP = Solving Constrained Integer Programs
SNRF = Space Network Research Federation
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TCP = Transmission Control Protocol
TE AMS − RT = Testability Engineering and Maintenance System (Real Time) (TEAMS-RT)
TT = Time-Triggered
TTE = Time-Triggered Ethernet
UDP = User Datagram Protocol
V DC = Volt Direct Current
VSM = Vehicle Systems Manager

I. Introduction

The United States National Aeronautics and Space Administration (NASA) is working with domestic and international
partners to solve the great challenges of deep space exploration. Missions in the vicinity of the Moon will span

multiple phases as part of NASA’s framework to build a flexible, reusable and sustainable infrastructure that will last
multiple decades and support missions of increasing complexity. This first phase of exploration near the Moon will use
current technologies, enabling NASA to develop new techniques and apply innovative approaches to solving problems
in preparation for longer-duration missions far from Earth.

NASA plans to construct a habitable spacecraft, currently referred to as the Lunar Orbital Platform-Gateway (LOP-G)
[1], in the vicinity of the Moon. LOP-G consists of a Habitat, Airlock, Power and Propulsion Element (PPE), and
Logistics module. LOP-G will support up to 4 crew for 30 days. The PPE will provide orbital maintenance, attitude
control, communications with Earth, space-to-space communications, and radio frequency relay capability in support of
extravehicular activity (EVA) communications. The Habitat provides habitable volume and short-duration life support
functions for crew in cislunar space, docking ports, attach points for external robotics, external science and technology
payloads or rendezvous sensors, and accommodations for crew exercise, science/utilization and stowage. The Airlock
provides capability to enable astronaut EVAs as well as the potential to accommodate docking of additional elements,
observation ports, or a science utilization airlock. A Logistics module will deliver cargo to the Gateway.

Of significant importance for these future missions is the balance between crew autonomy and vehicle automation.
As noted above, small crews cannot take on all functions performed by ground today, and so vehicles must be more
automated to reduce the crew workload for such missions. In addition, both near-term and future missions will feature
significant periods when crew is not present, meaning the vehicles will need to operate themselves autonomously. A
thorough assessment of human spaceflight dormancy and autonomy requirements for a future Mars mission describes
the wide range of challenges to be faced [2]. The need for autonomy for the LOP-G is reflected in the Gateway concept
of operations [1] and its requirements, as well as requirements for the first of its components, the PPE [3]. A number of
projects have demonstrated different elements of human spaceflight autonomous mission operations, including crew
autonomy [4], [5] i.e. enabling astronauts to operate their spacecraft without assistance from Earth-based Mission
Control, and vehicle autonomy [6], [7], i.e. enabling the vehicle to operate on its own, whether crew are present or not.
However, many of these demonstrations were either performed onboard the International Space Station (ISS), on older
hardware and flight software, or in low fidelity analog environments. The LOP-G will have a different design, operating
environment, and mission, and can take advantage of new flight software and avionics technology, thus motivating
further technology development and demonstration activity.

NASA’s Advanced Exploration Systems (AES) program∗ pioneers new approaches for rapidly developing prototype
systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond low-Earth
orbit. Under this program, NASA has developed and tested multiple technologies to enable the autonomous operation of
a dormant space habitat. These technologies included a fault-tolerant avionics architecture, novel spacecraft power
system and power system controller, and autonomy software to control the habitat. The work in this paper continues
the effort described in [8] to develop and demonstrate autonomy technology using contemporary flight software and
automated reasoning technology. These technologies are described briefly below, and in more detail in the remainder of
the paper.

The Habitat’s Avionics Architecture consists of three Flight Computers (FCs), each running a real-time operating
system and integrated with each other and other spacecraft subsystems over a Time-Triggered Ethernet (TTE) network.
The use of a time-triggered (TT) paradigm enables the delivery of messages with low latency and constant jitter.
Redundant switches are used to help ensure successful message delivery in the presence of faults. The flight software,
including all subsystem control functions, data management, avionics bus messaging, etc. is based on NASA’s Core

∗https://www.nasa.gov/content/aes-overview
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Flight System (cFS) framework. A time-triggered scheduler couples the flight software schedule to the network time
base, and special cFS applications provide abstractions for messaging between different processors. The FCs run
identical copies of the flight software, and commands from the FCs are resolved to protect against corrupted data.

The AES Modular Power System (AMPS) power storage and distribution system consists of two 120 Volt Direct
Current (VDC) Main Bus Switching Units (MBSUs), cross-strapped to two Power Distribution Units (PDUs), which
power independent loads. The AMPS hardware is managed by an Autonomous Power Controller (APC), which is
responsible for ensuring the safe operation of the hardware, including fault management energy forecasting, and
analyzing and implementing user load schedules which prioritize the loads for power.

Habitat autonomy technology is designed to manage the Habitat. It consists of multiple cFS applications performing
spacecraft-wide operations and management functions. One set of applications is able to schedule Habitat subsystems
during nominal operations and execute those schedules autonomously. Additional applications detect faults that reduce
available energy to spacecraft subsystems, which triggers rescheduling in order to un-power non-critical spacecraft
systems, notify the power system of new load schedules and priorities, and command hardware to power down.

Considerable systems engineering and integration was required to develop and demonstrate autonomous habitat
operations. cFS message identifiers required deconfliction both across applications and across multiple flight computers.
A tool was created to automatically generate the cFS headers and message identifiers; this tool is called the cFS Command
and Data Dictionary (CCDD) and captures a representation of the software components and required messages. The
time-triggered scheduler also required knowledge of application run-time, to ensure message send and receive were
performed on schedule.

The demonstration involved simulation of the Habitat and multiple sub-systems (power storage and distribution,
avionics, and air-side life-support) during a multi-day test at NASA’s Johnson Space Center. The foundation of the
demonstration was ‘quiescent operations’ (no maneuvers, EVAs, or docking / undocking operations) of the Habitat
during a 55 minute eclipse period. For this demonstration, a Vehicle Systems Manager (VSM) applications managed
the spacecraft power distribution system and air-side life support system at a high level of fidelity; additional systems
were managed, but with lower fidelity operational constraints and system behavior. Operational constraints for real and
simulated loads were derived from on-orbit hardware and future Exploration-capable technology. A total of 13 real and
simulated loads were used during the test. Scenarios including both nominal and off-nominal conditions were performed.
Over the course of the test, every application performed its desired functions successfully during the simulated tests.
The results will inform both future tests, as well as provide insight to NASA’s domestic and international partners, as
they construct the next generation of space habitats to be used on beyond-Earth missions.

II. Advanced Technology Development
In this section we will describe the technology developed by NASA to autonomously manage a Habitat. The

Modular Power System and the associated Autonomous Power Controller are described in Section II.A. The Avionics
and Software architecture is described in II.B. Habitat autonomy enabling capabilities are described in Section II.C.
Finally, associated Systems Engineering technology developed to manage software configuration is described in II.D.

A. Modular Power System and Autonomous Power Controller
The AES Modular Power System (AMPS) performs power storage and distribution. It consists of two batteries,

two MBSUs cross-strapped to two PDUs, each of which feature 8 ports; thus, the system can power 16 independent
loads. Loads are not cross-strapped to multiple PDUs. While the broader power system design includes solar arrays and
associated power distribution hardware, these elements were unimportant for the purposes of our demonstration. The
AMPS hardware configuration is shown in Figure 1; the powered subsystems are further describe in Section III.

The AMPS hardware is managed by the APC [9], which is responsible for ensuring the safe operation of the hardware,
including fault management (monitoring and detection of faults), reconfiguring the power system after a fault has
been detected, restoring the system to a normal state, forecasting energy availability, and analyzing and implementing
user load schedules which prioritize the loads for power. The energy availability forecast consists of total energy and
instantaneous power availability constraints for a 2 hour window. The energy availability forecast is generated using a
model incorporating energy consumption and production, battery state of charge and state of charge limits, and internal
power system faults. Specific battery sizing and demonstration specific operational constraints are described further in
Section III.B.

The role of the APC is to safely operate the vehicle’s electrical power system and provide power to as many loads as
possible. This role can be broken down into two functions, energy management and fault management. The APC is
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Fig. 1 Power System Configuration showing MBSU-PDU cross-strapping and 8 RPCs, and PDU-MBSU
assignment for each load.

responsible for predicting the energy that is available into the future, and ensure that the loads do not consume more
energy than is available in the prescribed window and that the power draw does not exceed any of the power system
constraints, such as overloading one of the channels. To carry this out, the APC provides the VSM with a 2-hour power
profile noting the maximum power per power distribution unit and the total energy over the given time window. The
power and energy constraints take into account faults within the electrical power distribution system and ensures the
battery state of charge limits are maintained at the end of the power profile. The VSM is free to schedule energy and
power usage within those constraints, while respecting the other mission constraints (described in section II.C). The
VSM returns to the APC a load schedule, indicating whether a load is powered on or off in a 5 minute time period, and a
load shed priority if the load is on, to be used in the event of a fault. This cycle repeats every 5 minutes.

The second function of the APC is to deal with electrical power system faults. The APC monitors the electrical
power system for faults within the power system, such as stuck or faulty switches, sensor failures, and short circuits.
Once a fault is detected, the APC takes action to reconfigure the electrical power system to deliver power to the highest
priority loads; load priority is sent by the VSM as part of its schedule. Next, the APC determines the impact on energy
availability and will shed any loads to ensure that the APC does not overdraw from the batteries and keeps the battery
state of charge within its limits. Finally, the APC notifies the VSM of the fault, the loads that have been shed, and the
new energy availability. If the faulted power system component is removed, or the fault is otherwise resolved, the APC
also has the ability to return the new equipment to service and go to its nominal configuration.

B. Avionics and Software
The Avionics and Software foundation of the Habitat is divided into two categories. We first describe the avionics

hardware. Then we discuss the software architecture, as well as key applications used in this architecture.

5



1. Avionics Architecture
The architectural approach used follows that of a Distributed Integrated Modular Architecture (DIMA), where each

platform hosts functions of different criticalities [10]. At the core of the architecture are three redundant FCs. Each FC
is comprised of a CompactPCI chassis, an Aitech SP0-100 single board computer (PowerQUICC-III MPC8548E), and a
TTE A664 network controller. Each FC runs VxWorks 6.9, cFS, and an identical load of cFS software. A fourth chassis
performs the role of a Remote Interface Unit (RIU) connecting the FCs to various end devices. Finally, two desktop
computers implement some cFS applications and other critical functions (e.g. life support system simulation, display
servers). Both are also equipped with TTE network interfaces. The avionics architecture is shown in Figure 4.

Connectivity between platforms is provided by means of three redundant 24-port TTE A664 lab switches. Each of
the switches connects to all of the end systems above. Communication between platforms occurs through all redundant
switches simultaneously. Messages are forwarded according to static tables. The ARINC 615A protocol is used for
loading new tables on the switches over the network. The network cards and switches implement TTE network services
in hardware, transparent to the host applications. The network controllers act as Synchronization Masters in the sync
protocol, and are assumed to be capable of failing arbitrarily. The switches act as Compression Masters, and are assumed
to be constrained to a more restrictive inconsistent omission failure mode †. The TTE network is also leveraged for
synchronizing flight software on the three FCs and RIU. Depending on the properties of the network scheduling used, it
is possible to achieve <50µs of skew between computers.

The FCs are able to vote redundant TT messages to ensure consistency of shared state and input data. This is
necessary to tolerate the asymmetric failure of a TTE card, in which different ‘valid’ messages could be sent to different
receivers (i.e. wrong data, correct cyclic redundancy check). Redundant messages from the same transmission can be
grouped in time based on the precision of the network. The voting logic can be implemented in either software (e.g. the
end system driver) or hardware (e.g. in an Field Programmable Gate Array (FPGA)) [10]. In either case, a single TT
transmission through the three switches is resolved to a single message at the receiver.

All messages generated by the FCs flow through the RIU, which bridges the TTE network with a classical Ethernet
Local Area Network (LAN). The Ethernet LAN is connected to a host of distributed subsystem controllers implementing
different functions. Each contains an embedded controller responsible for data processing and message distribution.
For example, a National Instruments CompactRIO is embedded in each of the AMPS power components. Other
systems include communications hardware, human interfaces, and crew displays. In total, the test article features over
15 computer platforms with different processor architectures, byte orders, and operating systems; a subset of all the
computers, along with the switches, is shown in Figure 4.

2. Core Flight System
The core Flight System (cFS) is a platform and project independent reusable software framework and set of reusable

software applications [11]. cFS was originally developed by NASA Goddard Space Flight Center and now maintained
by a NASA Configuration Control Board (CCB). This framework is used as the basis for the flight software for satellite
data systems and instruments, but can be used on other embedded systems. cFS is written in C and depends on another
software library called the Operating System Abstraction Layer (OSAL). This software is licensed under the NASA
Open Source Agreement.

There are three key aspects to the cFS architecture: a dynamic run-time environment, layered software, and a
component based design. It is the combination of these key aspects that makes it suitable for reuse on any number of
NASA flight projects and/or embedded software systems at a significant cost savings. To support reuse and project
independence, the architecture contains a configurable set of requirements and code. The configurable parameters allow
the cFS to be tailored for each environment including desk-top and closed loop simulation environments. The typical
cFS applications and services, augmented with autonomy applications (discussed in Section II.C), is shown in Figure
2. The cFS architecture simplifies the flight software development process by providing the underlying infrastructure
and hosting a runtime environment for development of project/mission specific applications. The cFS architecture
also simplifies the flight software maintenance process by providing the ability to change software components during
development or in flight without having to restart or reboot the system. The cFS architecture has been proven to reduce
time to deploy high quality flight software, facilitate formalized software reuse, and simplify flight software sustaining
engineering.

In the remainder of this section we describe select cFS applications developed for this demonstration.
Time-Triggered Ethernet (TTE). The TTE application enables any cFS application to send and receive messages
†For more information, see SAE Time-Triggered Ethernet standard AS6802: https://www.sae.org/standards/content/as6802/
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autonomy enabling applications.

over a TTE network. It provides a simple Application Program Interface (API) by which other apps can claim and
access preconfigured data ports. It also enables apps to register interrupts – allowing them to be notified asynchronously
when new messages are received, the status of the Ethernet transceivers are changed, or at fixed times in the network
schedule. The app is configured using static tables. The tables define the network schedule of the network controller, as
well as mapping information for each available TTE port. Unlike most avionics implementations using TTE, the tables
can be manipulated at runtime using commands from the ground. Additionally, the app publishes detailed diagnostic
information about which ports are available, which tasks own which ports, as well as message error counters and
timestamps. This data can be leveraged by onboard fault detection and recovery systems, or used for debugging.

Time-Triggered Scheduler (SCH-TT). In a distributed system, where networked platforms must coordinate to
perform some task, it is often necessary to synchronize the execution of the software running on the platforms. This
ensures, for example, that data is made available from one platform before it is expected by another. Additionally, it
enables fault tolerance approaches in which the same computation is performed on multiple platforms in parallel and
then compared. The SCH-TT app leverages the global TTE time base in order to schedule periodic flight software
activities at fixed times in the network schedule. Activities scheduled within the same time slot occur simultaneously
across all computers in the synchronized set. The flight software schedule is executed within a configurable major frame,
which is made to match the cluster cycle of the TTE network. The major frame is divided into multiple minor frames.
In each minor frame, the scheduler transmits software bus messages in order to signal other apps to execute or publish
telemetry. Moreover, the app uses the concept of "modes" to control the state of the system (e.g. running, paused).
Mode change requests sent to one computer are automatically shared synchronously with all its synchronized peers.
This design ensures all peers stay synchronized during mode transitions. SCH-TT serves as a drop-in replacement
for the standard cFS scheduler, and can therefore be used without impacting other apps. It leverages the TTE cFS
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application for messaging and interrupt handling.
Software Bus Network (SBN). The cFS was originally intended for simple spacecraft architectures that host the

majority of vehicle functions on a single processor. For more distributed architectures, where software runs on multiple
platforms, it is necessary for cFS applications to communicate over the network. SBN connects the local software bus
on one platform to those of cFS instances running on other platforms. This enables messages published on one bus to
be received by subscribers on other buses. This is accomplished by mapping cFS message IDs to network addresses
corresponding to different peers. SBN uses a modular architecture in order to support multiple protocols (e.g. TCP,
SpaceWire). This design enables SBN to support new protocols through the development of different network plugins.
A small interface library, SBN-LIB, allows systems which don’t run cFS (such as the APC) to still communicate using
the SBN protocol.

SBN was originally designed to be dynamic and flexible. Heartbeat messages can be used to detect other SBN
instances over the network, and subscription lists can be updated to change which messages are sent to different peers.
However, this approach is not possible when using networks where resources are statically preallocated (e.g. A664-P7,
TTE). In such networks, the routing of all traffic flows is decided a priori. To enable the use of these networks, the
dynamic aspects of SBN must be disabled. In the case of TTE, static configuration tables are used to map message IDs
to the preconfigured TTE ports. These tables are generated in combination with the TTE schedule to ensure they are
consistent. They are loaded at initialization, and cannot be changed at runtime.

Level-1 Voter (L1V).While voting redundant TT frames ensures the integrity of messages sent from a single sender,
it does not allow receivers to resolve commands from multiple senders. The L1V application is used to resolve multiple
software bus messages to a single new message. This capability is useful in cases where a given platform may receive
data from multiple redundant devices (e.g. flight computers, sensors). The application is command driven, and can be
scheduled to periodically read redundant messages and publish the ‘correct’ message. Unsuccessful votes, e.g. where a
majority is not reached, can be summarized in the form of cFS event messages. The voting algorithms used are modular
and configured by cFS tables. Both majority voting and priority-based algorithms are currently implemented. Future
work may enable parts of a message to be voted separately, e.g. by majority, averaging, or mid-value selection. To
facilitate testing, a separate application was developed to corrupt messages to be voted.

C. Habitat Autonomy Technology
Autonomous operations capabilities include planning and scheduling, plan execution, and fault management. These

capabilities are described further in the following subsections.

1. Fault Management
We developed multiple fault management cFS applications with complementary capabilities, applied to different

Habitat subsystems.
Fault Detector (FD). The FD processes system data to determine if any defined off-nominal conditions exist. Each

off-nominal condition is associated with a test; the inputs to the FD are system data, and the outputs are a set of pass, fail
or unknown test results. FD also performs data validation and filtering, such as checks for values that are off-scale,
indicating a sensor open or short circuit, and suppresses any test that would check the sensed value against a threshold.
Data validation can include checking for sensors that have stopped updating. Since many sensors normally jitter at least
a small amount, if a sensor has not changed for many read cycles, it is considered unreliable and any test using the
data would be set to unknown until it is updated again. While the data on an invalid sensor reading is suppressed from
qualitative testing, the invalid condition itself can be used as an indication of a failure. The sensor itself, or a component
involved in converting analog to digital and transmitting the data from sensor to flight computer, may have failed, and
the data validity can be a key indicator of these failures. The fault detector is also responsible for assessing system
configurations and suppressing tests that are not available or not needed in certain situations, such as a test on pressure
output when a pump is turned off as part of normal operations. FD is implemented using the cFS Limit Checker (LC)
application, which subscribes to software bus messages and takes action under conditions specified in a table. The usual
action is to issue a command or send a message to another application.

Diagnostic Executive (DE). The DE receives test results from FD and packages them to send to the Commercial
Off The Shelf (COTS) diagnostic reasoner, called Testability Engineering and Maintenance System (Real Time)
(TEAMS-RT) [12]. TEAMS-RT is built into the Diagnostic Executive as a library package, and executes as part of the
Diagnostic Executive task in the cFS application set. TEAMS-RT receives the pass, fail and unknown test results that
correspond to test points in a diagnostic model. TEAMS-RT correlates test points with failure modes. A failed test can
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implicate one or more failure modes, while a passing test exonerates failures. With sufficient data, a single failure mode
can be identified that is responsible for all failed tests, and an unambiguous failure mode is identified. Otherwise, the
reasoner determines the smallest set of possible failure modes that could be responsible for failed tests and presents an
ambiguity group of possible failures. If additional data can be obtained, such as by executing procedures or manual tests,
it may be possible to resolve the ambiguity. DE operates once per second to provide continually updated diagnostic
results that include positive assertions of correct operations, in addition to identification of faults

Fault Impacts Reasoner (FIR). FIR receives failure information from DE and determines the resultant impacts
of confirmed failures [13]. Impacts include the loss of function due to a fault, such as the components that have lost
electrical power due to a fault in the electrical system. The loss of redundancy due to a fault is also determined. Most
critical functions in spacecraft depend on redundancy to assure the availability of the function in spite of failures. Of
particular concern is any function that could be lost by a single additional failure, or has become zero-fault tolerant. FIR
identifies these changes in redundancy to aid with identifying functions at increased risk, helping operators to determine
next worst failures and take mitigation steps to reduce the risks of additional failures, if possible. FIR, coupled with DE,
draws a crisp distinction between failed, that is, broken components, from components and functions lost or affected
by the failure of a component. The distinction is critical to most effectively take actions to continue safe flight while
planning the restoration of capability through reconfiguration or in-flight repairs.

FD, DE and FIR collectively implement a complete fault management capability referred to as Advanced Caution
and Warning System (ACAWS) [14]. ACAWS is being adapted to perform fault management for the Orion spacecraft,
both for flight controllers and also for crew [13]. We have used the same reasoning technology for this work, but adapted
the components for integration with cFS, and also to function without a user interface.

Hybrid Diagnostics Engine (HyDE). HyDE [15] uses hybrid (combined discrete and continuous) models and
sensor data from the system being diagnosed to deduce the evolution of the state of the system over time, including
changes in state indicative of faults. In contrast with TEAMS, HyDE can represent hybrid systems, i.e. mixes of
discrete and continuous quantities; TEAMS, by contrast, can only model discrete systems. HyDE models are state
transition diagrams, showing how events change the state of the system; these events can be nominal (e.g. commands
and processes) or faults. When the sensor data are no longer consistent with the nominal mode transitions, HyDE
determines what failure mode or modes are now consistent with the data. While HyDE requires some preprocessing
of system sensor data, HyDE can take general inputs (commands, numerical values) from systems, making it more
powerful than TEAMS-RT, but more computationally expensive.

2. Vehicle Systems Manager (VSM)
Scheduling and schedule execution are integrated into a single application called the Vehicle SystemsManager (VSM).

The job of the VSM is to provide power and load schedules to the APC, listen for faults, and revise the spacecraft-wide
mission plan in response to faults, while respecting the mission constraints. We describe the sub-components of this
application below.

Planning and scheduling are required to choose and order spacecraft activities in order to meet objectives and
satisfy constraints. Planning and scheduling may need to pick from mutually exclusive activities (e.g. there is enough
crew time to maintain and repair equipment, or to conduct science activities, but not both). For the purposes of this
demonstration, the activities are all known in advance, so it is necessary ‘only’ to schedule activities. Activities generally
have constraints on time, including activity duration, limitations on start and end times, and activity ordering. Activities
also use resources; examples include power, thermal, spacecraft memory, and data bandwidth.

For our demonstration, activities correspond to periods of time during which each subsystem, corresponding to a
load on the power system, must be used. Most of the spacecraft systems are continuously powered, but some must
be switched off periodically. All of the systems use power, and thus energy; some of the subsystems have additional
constraints. The specific constraints on scheduling addressed in this work are further described in Section III.B. The
most important function of the scheduler is to generate the load schedule to send to the APC. This load schedule must
be consistent with the available power and energy for that window as predicted by the APC.

Many spacecraft have the ability to send commands to underlying spacecraft subsystems using a previously developed
plan or schedule. These commands are monitored to ensure they completed successfully prior to starting the next
activity. Additional monitoring functions can detect and respond to unexpected events and fault codes generated by
lower level flight software functions. Plan execution capability can take the form of command sequences or scripts. For
our purposes, plan execution operates as a higher level of abstraction, managing many sequences that run simultaneously,
while also monitoring for unexpected events. The plan execution system must take as input a new plan, generated by the
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planner, as the mission continues.
Solving Constrained Integer Programs (SCIP). The VSM scheduler uses the Solving Constrained Integer

Programs (SCIP) Optimization tool [16], an open-source tool designed to solve constrained optimization problems
which combine mixed-integer, and linear programming, and constraint programming methods. We modeled the power
loads as jobs to be scheduled. Each job must then be scheduled subject to periodic constraints to model duty cycles for
each load, with constraints requiring some loads power mode to be synchronized with each other, and with constraints
on the maximum instantaneous power demand and total energy consumption over the 2-hour plan horizon. The specific
constraints are described further in Section III.B. As the mission continues, or when new circumstances (e.g. advancing
time, new goals or constraints, unexpected events, or faults) arise, the scheduler generates new plans. The SCIP solver is
integrated with cFS to allow re-invocation as new information becomes available.

Plan Execution and Interchange Language (PLEXIL) The plan is executed by the Plan Execution and Interchange
Language (PLEXIL), developed as a collaborative effort by NASA and Carnegie Mellon University, and subsequently
released as open-source software [17]. PLEXIL is a language for representing flexible robust plans intended to
be executed in an uncertain and changing environment. PLEXIL provides well defined execution semantics with
contingency handling which can be formally validated and produces deterministic results given the same sequence of
environmental inputs. PLEXIL’s Execution Engine (executive) executes stored plans written in the PLEXIL language.
PLEXIL is responsible for receiving new energy availability messages from the APC and invoking the scheduler, and
for sending new load schedules to the APC after generation by the scheduler. PLEXIL is also responsible for receiving
fault messages from the fault management functions, and invoking scheduling in the event one or more systems need to
be powered off in response to a fault ‡.

D. Systems Engineering and Integration
The cFS Command and Data Dictionary (CCDD) is a tool for managing command and telemetry data descriptions

for cFS and its applications, and for producing configuration files for software, ground support, and crew displays. As
described earlier, the article under test is a distributed heterogeneous set of avionics computers on a time triggered
Ethernet and classic Ethernet network. The vehicle computers, including the voting triplex flight computers and the
RIU, run the cFS framework, reusable cFS apps, and custom mission developed software. Each system communicates
over the cFS software bus that is extended by the SBN app. Each message produced by each system, whether it is local
or shared to its peers, is described in the CCDD database. The CCDD application is driven by an intuitive Webpage
interface, shown in Figure 3.

Using a common CCDD database, cFS message identifiers were globally assigned in order to be unique both across
applications and across multiple flight computers. Scripts were created to automatically generate the cFS headers and
message identifiers for the entire test configuration. The TTE bus also required extensive scheduling, with knowledge of
application run-time, to ensure message send and receive was performed on schedule. The TTE network schedule tables
are also created based in information captured in the CCDD, and a plugin to generate the schedule is currently being
developed.

As described above, habitat autonomy is implemented by a variety of cFS applications. These applications are
integrated via cFS messages and commands described in the CCDD process. For example, AMPS generated data enters
the fault management application via FD, which uses the cFS LC application; the CCDD captures the description of
the messages LC subscribes to. The APC-VSM integration also required numerous cFS messages, which required
description using the CCDD process.

Last, we describe the deployment environment for the software under test. The cFS, The TTe and SBN applications
run on all computers connected to the TTe swtich; the SBN-LIB enables applications running on the Ethernet switch to
communicate. One copy of the SCH-TT is needed on each FC; a final copy of TT-SCH runs on the RIU. The stock SCH
application runs on the Linux host. The AMPS software is implemented as several concurrent applications running
on multiple computers. The APC is a Linux application running on one host. The data collection applications are
connected to a database and data publishing application, APCDBIO, that runs on a second Linux host. This application
publishes data via SBN. The FD, DE and HyDE components of the VSM were ported to the triplicate FCs; SCIP,
PLEXIL and FIR were run on a host Linux machine.

The complete test article is shown in Figure 4. This figure shows the network and switch configuration, the CPUs,
and the subset of cFS applications running on each CPU.

‡In more complex simulations, spacecraft subsystems would have command interfaces to power them on or off; in our simulation, loads were
controlled entirely by the load plan sent to the APC.
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Fig. 3 Screenshot of the CCDD. The Web interface allows users to capture the message definition for each
subsystem; engines behind the UI produce cFS message definitions and appropriate headers.

E. Testing and Fault Injection
The team developed a variety of infrastructure to facilitate both testing of the system components, and the

demonstration itself. Considerable effort in this area was oriented towards fault injection to test the fault management
and fault response capabilities of the system.

The cFS Data Storage (DS) application stores cFS message traffic in files. These file are generally stored on a
storage device such as a solid state recorder but they could be stored on any file system. Another application must
be used in order to transfer the files created by DS to the ground. DS is table-configured and will store specified
messages to specified files. Files will automatically be rotated to ensure file size limits are not reached and to more easily
support downlink of stored data. In order to facilitate application testing, we developed the DS_Replay (DS_REPLAY)
application, which replays messages from DS-generated files at a configurable replay rate, either a fraction of the rate
in which the messages were captured by DS or at a set playback frequency. DS_REPLAY is controlled via run-time
commands. This allowed us to record test sessions with hardware and replay this data during the software development
process.

To ensure adequate power systems fault model coverage, the team built a fault scenario generation tool. This tool
permitted the generation and infusion of artificial power systems faults. This was an important way of maturing the fault
management application, since silent commanding was only able to produce a limited set of faults. The list of power
system faults tested is shown below in Table 1.

Faults were introduced during tests in several different ways. Power systems faults were introduced by implementing
a ‘silent’ cFS command in the AMPS hardware interface. This command would cause a switch in the AMPS hardware
to open or close without registering in the normal manner. This unexpected switch change would then be identified both
by the APC and, ultimately, ACAWS, as a fault. AMPS faults simulated by silent commanding included Switch Failed
Open, Cable Short Circuit, and Internal Power Supply failure. External short circuits were simulated by lowering the
trip setpoint below the present current draw, or by raising the current draw of the Programmable Load Bank above the
trip threshold. As noted in Section II.B, avionics bus faults, that is, mangled packets, were introduced via a Mangulator
application. This application is also a cFS app. An operator can inject some number of mangled packets that must
be detected and voted on by the Level 1 voting app. Avionics faults were also accomplished by disconnecting flight
computers from the avionics rig. Finally, in some cases, faults are introduced by replaying a dataset containing the
appropriate fault signature using the cFS DS_REPLAY application.
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Fig. 4 Avionics system architecture with triplicate flight computers, TTE switches, Ethernet backbone, RIU,
AMPS hardware, and support computers. This diagram also indicates the cFS configuration for each computer,
which is a subset of the application types described in Figure 2.

III. Demonstration of Capability
In this section we first describe the specific elements of the Habitat that were simulated as part of our demonstration.

We then describe the operational constraints that must be respected during the demonstration. Finally, we describe the
scenarios on which the integrated system was tested.

A. Habitat Simulation
The demonstration was conducted at NASA’s Integrated Power, Avionics and Software facility (iPAS). This facility

physically hosted the Avionics and Software hardware and the AMPS hardware, as well as support facilities including
power and host computers for running simulations of celestial bodies, the Habitat, and other spacecraft functions that
were part of other demonstrations. The APC was run at the NASA Glenn Research Center; the APC was integrated with
the iPAS over the Space Network Research Federation (SNRF) Network, a NASA internal TCP-IP network.

As described in Section II.A, the number of powered loads attached to the power is constrained by the number
of RPCs (8 per PDU, for a total of 16). Three of these were taken up by the three flight computers, and three more
were taken up by the TTE switches; the power and energy consumption of these components is known. Seven of the
remaining 10 RPCs were occupied by simulated loads representing notional Habitat subsystems. The most complex and
interesting simulated loads are the Sabatier reactor (SAB) and the Plasma Pyrolasis Assembly (PPA) [18], which are
candidates for a closed-loop air-side Environmental Control and Life Support System (ECLSS). The Sabatier reaction
takes as input CO2 (produced by the crew) and H2, and produces as output CH4 (methane) and O2. ISS hosts a Sabatier
reactor; today, the CH4 is vented to space, resulting in a loss of H2. The PPA is designed to energize the methane using
microwaves to recover some of the H2, thereby closing the loop on this commodity. For our demonstration, we used
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Fault Number of Instances Notes

Power Loss 14 Loss of primary power source
Switch Fail Open 30 Switch or relay fails to the open position when intended to be closed
Switch Fail Close 30 Switch or relay fails to the closed position when intended to be open
External Short Circuit 20 Short circuit on a power cable or load
Circuit Overload 14 Overcurrent on a circuit not due to a short
Load Failure 10 General failure of a power load
Internal Power Supply 10 Failure of a Power Supply that provides 28 V power to AMPS internal controllers
Data Corruption 3 Invalid data detected on a data channel
Data Loss 10 Loss of all data on a data channel
Controller Fault 4 Loss of capability to send commands to AMPS components
Bus Short 3 Short circuit on an AMPS module internal bus
Power Card Fault 4 Failure of a PDU power card containing 4 Remote Power Controllers (RPC)

Table 1 Type and number of Modular Power System fault modes.

recorded data of both nominal and off-nominal tests of the PPA and Sabatier. These files were transformed into DS files
for replay using the cFS DS_Replay application mentioned above in Section II.D.

The remaining simulated loads were a crew potable water dispenser (PWD), two environmental systems, Oxygen
Generation Assembly (OGA) Fan and Cabin Common Air Assembly (CCCA) Fan, Spacecraft Atmosphere Monitor
(SAM), and Experiment Facility (EXP). The energy usage values for these systems were created exclusively to drive
interesting simulation use cases and outcomes; they are not representative of the energy consumed by either existing or
future spacecraft systems. The energy consumption, load shed priority, and power system configuration for each load is
described in Table 2. These values were used for every demonstration scenario.

B. Spacecraft Operational Constraints

Load Power (Kw) PDU-RPC Priority Notes

FC1 0.25 2-2 1 Flight computer (PPC750). Live load. Maximum Power.
FC2 0.25 2-3 2 Flight computer (PPC750). Live load. Maximum Power.
FC3 0.25 2-4 3 Flight computer (PPC750). Live load. Maximum Power.
TTE1 0.045 2-6 4 TTE switch. Live load. Maximum Power.
TTE2 0.045 2-7 5 TTE switch. Live load. Maximum Power.
TTE3 0.045 2-8 6 TTE switch. Live load. Maximum Power.
SAB 0.1 1-1 7 Sabatier reactor (Air-side life support system). Replayed data.
PWD 0.02275 1-5 8 Potable Water Dispenser. Simulated
PPA 0.1 2-1 9 Plasma Pyrolysis Assembly (Air-side life support system). Simulated
EXP 0.2 2-5 10 EXPRESS Rack (Experiment hardware facility). Simulated
OGA Fan 0.3 1-6 11 Oxygen Generator Assembly fan. Simulated
CCCA Fan 0.4 1-7 12 Cryo Cooler Compressor Assembly. Simulated
SAM 0.4 1-8 13 Spaceraft Atmosphere Monitor. Simulated

Table 2 Loads information for each spacecraft subsystem; power, PDU-MBSU assignment, and load shed
priority.

The AMPS configuration, created by the team for demonstration purposes, is as follows. Each MBSU and PDU was
configured to deliver 2.88Kw (nominal) power. The power system, and the battery in particular, is sized assuming a
maximum eclipse period of 55 minutes. The spacecraft has 2 batteries; each battery is assumed to be 30 Amp-hour at
126 Volts. This translates to 3.78KwH per battery (W = V × It, so 126V × 30Ah = 3.780 KWh). Each battery was
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Parameter Constraint Notes

Solar Array Power 2.88 Kw Assumed
MBSU Power 2.88 Kw Cross-strapped; 1 MBSU may power both PDUs loads
PDU Power 2.88 Kw No load cross-strapping
Battery DoD 30% Assumed
Battery Energy 1.134 KwH Derived from 30Ah, 126V

Battery Power Rate 1.235 Kw Derived from Max Eclipse Dur of 55 mins
Table 3 Power System operational constraints.

constrained to a 30% Depth of Discharge limit (that is, each battery may discharge no more than 30% of its available
energy). Thus, the nominal energy available is limited to 3.78 × 0.3 = 1.134 KwH per battery. In the worst case, we
assume this much energy is consumed in the 55 minute eclipse. This translates to a maximum consumption rate of
1.235 Kw per battery during the eclipse. These constraints are summarized in Table 3.

Operational constraints for the demonstration are driven primarily by the power system sizing, loads, and load
prioritization. From Table 2, we see that the loads are roughly balanced across PDUs, and initially, MBSUs and
batteries: 1.185Kw on PDU1, 1.22255Kw on PDU2, just under the nominal capacity ( 1.22255KwH×55

60 = 1.12067KwH <
1.134KwH). Note, however, if a fault occurs, all loads may be served by a single MBSU and, in eclipse, a single battery;
in general, loads may need to be shed in the event of a fault during eclipse. A note about battery energy availability
and APC behavior: as presently designed, the APC provides the VSM with energy availability, but does not reject a
load schedule using more energy than it reported available in the 2 hour window. If the load schedule generated by the
VSM does use more energy, the APC will divert energy to recharge the battery, reporting the lower energy available in
the next energy availability messages. If the VSM continues to ‘borrow’, the APC will continue to reduce the energy
available (and APC may start shedding more and more loads!) Ultimately, the total available could reach zero. This will
also happen if energy usage is higher than predicted due to variation in equipment performance or faults. Neither of
these conditions were explored during the demonstrations.

Four of the loads have additional operational constraints. PPA and SAB operating modes are constrained: either
both must be powered, or both must be unpowered. We assume CH4 from Sabatier cannot be stored, so if the PPA is off
or faulty, then the Sabatier must be powered off. Similarly, if the Sabatier is off or faulty, there is no reason to use energy
to power PPA, so it must be powered off. These two devices also have a ‘duty cycle’ constraint; they must be powered
off for 15 minutes after being powered on for 100 minutes. The PWD also has a ‘duty cycle’ constraint; it must remain
off for 1 minute after being on for 15 minutes. These constraints require the scheduler to periodically power off the SAB,
PPA and PWD devices. The EXP is normally powered on continuously. It cannot stay off for more than 30 minutes
before it must be powered on again; this constraint is a proxy for a thermal constraint (EXP contains a specimen freezer
that cannot be allowed to warm up without losing critical science.) No other devices have any operational constraints,
aside from those implicit in the load shed priorities.

C. Demonstration Scenarios
Table 4 describes the scenarios that were used to evaluate the Habitat systems, which we discuss further below.
In the two Nominal scenarios, the environmental conditions are varied (insolation and eclipse) but no faults are

injected. The purpose of this scenario is to ensure that all hardware ad software components in the test article functioned
properly under nominal conditions. In particular, all subsystem data should be routed to all cFS components correctly,
and the Level 1 voter should have nothing to do; the scheduler should ensure all loads remain on except for the PWD,
SAB and PPA duty cycle constraints; there should be no false alarms from the fault detection technology.

The 2 FC test and 1 FC test cases demonstrate that the Habitat can remain functioning when the FCs are lost, either
due to a malfunctioning FC or loss of power.

The Life Support systems fault involves introducing a PPA fault. In this case, once the fault is detected, the SAB is
shut off, the scheduler ensures both systems remain off in the updated schedule, and the VSM notifies the APC of the
new load schedule.

The Power Systems Fault is the most complex scenario. This fault eliminates half of the battery energy a few
minutes into the eclipse. Specifically, the loss of battery power during an eclipse is due to the failure of the MBSU
switch controlling power from the battery. When commanded closed, it failed to the open position, resulting in loss of
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Scenario Description Notes

Nominal All systems running, no faults No eclipse
Nominal plus Eclipse All systems running, no faults Eclipse
2 FC Voting Test 1 FC faulted No eclipse
1 FC Test 2 FCs unpowered No eclipse
3 FC Voting Test Inject mangled data No eclipse
Power Systems Fault Lose 1 battery during Eclipse Demonstrate load shed and power replanning
Power System Restored Reconnect battery Demonstrate fault cleared and battery recharging
Life Support Fault PPA Fault Demonstrate replanning and powering off SAB

Table 4 Demonstration Scenarios.

power from the battery. The battery was still functional, and continued to provide power to the MBSU power supply
and hence to the MBSU internal controller, but the failure resulted in complete loss of 120 VDC power input to the
MBSU and the ability to use the battery. The timing of this fault ensures that there is insufficient power to keep all
of the loads on throughout the eclipse. After the fault, the OGA Fan, CCCA Fan and SAM are shed because they
are considered ‘non-essential’ (lowest priority loads in the table). These loads total 1.1Kw; the remaining loads total
1.30775Kw. If this fault happens near the beginning of the eclipse, there will not be enough energy in the battery, which
only has 1.134KwH; the remaining loads will use 1.198KwH in 55 minutes of operation. The next lowest priority load
is EXP; however, the VSM can’t simply shed this load because of the constraint that EXP remain off for less than 30
minutes. However, powering off EXP for the maximum of 30 minutes saves 0.1KwH, bringing the energy consumed
down to 1.098KwH, which (barely!) avoids draining the sole remaining battery below the 70% state of charge limit.
This solution must be found by the VSM application. The EXP can be powered off anytime during the eclipse period
for 30 minutes to satisfy this constraint; the scheduler defaults to powering it off as early as possible. The Habitat
schedule immediately after the fault, before and after recovery scheduling, is shown in Figure 5. The left figure shows
the schedule after the fault but before rescheduling EXP. The fault hits 5 minutes after entering eclipse; the bottom left
shows battery energy depletion (green line), until just before exiting eclipse the battery energy drops below the 70%
state of charge limit (purple horizontal line, and red vertical bar on right of timeline). After scheduling 30 minutes of
EXP off-time (orange block on timeline on right) there is enough energy to last through the eclipse.

This scenario exercises the APC, and the fault management, scheduling and plan execution functions of the VSM.
The subsequent clearing of the fault is primarily designed to show that the fault management functions of the APC and
VSM will detect resolution of faults and report normal status.

Operational complexity arises when each individual component must address more and more cases consistently and
reliably, and when components must interact correctly to address every situation as it arises. While each individual
situation is relatively simple for each VSM component to address in isolation, ensuring correct behavior across all cases
simultaneously is a challenge. Table 5 shows how operationally complex these scenarios are according to parameters of
the simulated systems, operational constraints, fault modes, etc.

System Property Magnitude Notes

Power System Data 128 parameters
Life Support System Data 80 parameters PPA and Sabatier
Power System Fault Modes 152 faults
Life Support System Fault Modes 5 faults Carbon buildup faults, High reflected power, O-ring leak, cracked window
Avionics System Fault Modes 2 faults Loss of FC, mangled data

Schedule Size 312 steps (2 hours / 5 schedule minute granularity) x 13 loads
Schedule Constraint Types 6 constraints Includes power system and load constraints

System commands 60 commands 40 FC-specific commands, 20 ‘global’ commands
System data messages 70 messages 32 FC-specific msgs, 38 ‘global’ msgs

Table 5 Operational Complexity of the Demonstration Scenarios.
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Fig. 5 Power System fault occurrence and recovery timelines. The fault occurs 5 minutes after entering eclipse
(left); even after shedding OGA, CCCA and SAM loads, there is insufficient energy to survive eclipse until EXP
is powered off for 30 minutes (right).

A note about the number of ‘FC-specific’ commands and messages in the table: a number of cFS apps were running
on all three FCs; commands and messages ingested by these applications required an individual identifier, generated by
the CCDD process. See discussion in Section II.D.

IV. Lessons Learned and Next Steps
The demonstration scenarios show how to design a habitat that can be autonomously managed by integrating

numerous NASA-developed hardware and software technologies. Specifically, the DIMA architecture protects against
mangled data and loss of flight computers. The APC notifies other systems of insufficient energy due to faults during
eclipse conditions. Finally, the VSM is able to detect and respond to a variety of fault conditions. A solid systems
engineering foundation was key to capturing much of the software and hardware system configuration, and automatically
generating the cFS message definitions. Systems engineering was also key in building up incremental test infrastructure,
specifically, the ability to replay system data and mature VSM software components, as well as introduce faults during
the demonstrations.

The successful development and demonstration of these technologies produced many valuable lessons and
opportunities for future work. Even though the simulated habitat was small compared to many spacecraft, considerable
integration effort was required to ensure message content and semantics was clearly defined. While the CCDD
facilitated this integration effort, the technology itself required considerable development effort during the demonstration.
Improvements such as ability to generate more and more of the message content and headers are still necessary. The
CCDD process can, and should, also capture more cFS app configuration information; examples include some fault
management configurations and load energy configuration for the scheduler.

It is notable that many of the VSM components have been developed independently over many years. Considerable
work was needed to integrate these technologies with cFS, e.g. making operating system calls OSAL compliant,
controlling size of messages, managing big- and little-endian byte order of data on heterogeneous processors, and
constructing a schedule of invocations consistent with the TTE-driven schedule developed for the rest of the cFS
applications. Enhancing both the CCDD and augmenting SBN to reduce the burden of mixed endianess is a future
enhancement. While L1V was demonstrated, switch-level voting was not; this capability will be exercised in a future test.
While many of the new applications were demonstrated on the triplicate FC architecture, some components (PLEXIL,
SCIP, FIR) were not. PLEXIL has been previously ported to cFSN running on an embedded processor, but this has not
been accomplished to date for the other VSM components. Demonstrating all components running on path-to-flight
avionics computers is an important and necessary advance. In a similar vein, the power systems software currently
consists of many applications running on several desktop computers; consolidating these into a single application is also
a key path to flight activity.
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The maturation of DS_REPLAY was instrumental in ensuring software testing was possible when hardware was not
available. The ability to inject faults is a critical capability to test system behavior in off-nominal conditions. While this
capability was available, fault coverage was not complete, and more work is needed to demonstrate behavior of the
habitat under a variety of fault conditions.

From the perspective of operational complexity, adding more spacecraft subsystems, increasing the number and
complexity of faults, and adding more complex operational dependencies between systems will increase fidelity, as well
as impose more requirements on all of the autonomy enabling components. The ECLSS system can be made more
realistic by including CO2 and CH4 storage and thermal management. The number of faults for PPA and Sabatier vastly
exceeds the cases we have data for; more data is forthcoming, which will increase complexity of fault detection. We
note that all spacecraft subsystems in our demonstration had only two power consumption levels; on or off. Many real
spacecraft systems have different operating modes, e.g. variable speed fans, heaters, and so on. These more complex
behaviors will introduce higher operational complexity. Fault response may include high power or energy consuming
activities, either by turning on equipment that is turned off, or by placing equipment into high power consuming modes.
A final advance is to introduce strategic schedulers or planners that reason for as much as 24 hours into the future,
instead of the more limited 2 hour planning horizon demonstrated in our work.

V. Acknowledgements
The authors would like to thank Kevin Seywald for his assistance in reviewing the paper. This work was funded by

the NASA Advanced Exploration Systems Program.

References
[1] Crusan, J. C., Smith, R. M., Craig, D. A., Caram, J. M., Guidi, J., Gates, M., Krezel, J. M., and Herrmann, N., “Deep Space

Gateway Concept: Extending Human Presence into Cislunar Space.” Proceedings of the IEEE Aerospace Conference, 2018.

[2] Williams-Byrd, J., Antol, J., Jefferies, S., Goodliff, K., Williams, P., Ambrose, R., Sylvester, A., Anderson, M., Dinsmore,
C., Hoffman, S., Lawrence, J., Seiber, M., Schier, J., Frank, J., Alexander, L., Ruff, G., Soeder, J., Guinn, J., and Stafford,
M., “Design Considerations for Spacecraft Operations During Uncrewed Dormant Phases of Human Exploration Missions.”
Proceedings of the International Astronautical Congress, 2016.

[3] NASA, “Spaceflight Demonstration of a Power and Propulsion Element (PPE),” https://www.fbo.gov/spg/NASA/
GRC/OPDC20220/80GRC018R0005/listing.html, 2018. See Amendment 6: Unique Requirements.

[4] Morris, P., Do, M., McCann, R., Spirkovska, L., Schwabacher, M., Frank, J., and Baskaran, V., “Determining Mission Effects
of Equipment Failures,” Proceedings of the AIAA Space Conference and Exposition, 2014.

[5] Frank, J., Iverson, D., Knight, C., Narasimhan, S., Swanson, K., Scott, M., Windrem, M., Pohlkamp, K., Mauldin, J., McGuire,
K., and Moses., H., “Demonstrating Autonomous Mission Operations Onboard the International Space Station.” Proceedings of
the AIAA Space Conference and Exposition, 2015.

[6] May, R., Soeder, J. F., Beach, R. F., George, P. J., Frank, J., Schwabacher, M. A., Wang, L., and Lawler, D., “An Architecture to
Enable Autonomous Control of Spacecraft,” AIAA Propulsion and Energy Conference, 2014.

[7] Stetson, H., Frank, J., Haddock, A., Cornelius, R., Wang, L., and Garner., L., “AMO EXPRESS: A Command and Control
Experiment for Crew Autonomy.” Proceedings of the AIAA Space Conference and Exposition, 2015.

[8] Aaseng, G., and Frank., J., “Transitioning Autonomous Systems Technology Research to a Flight Software Environment.”
Proceedings of the AIAA Conference on Space Operations, 2016.

[9] Csank, J., Soeder, J., Follo, J., Muscatello, M., Hau, Y. H., and Carbone, M., “An Intelligent Autonomous Power Controller for
the NASA Human Deep Space Gateway,” Proceedings of the AIAA International Energy Conversion Engineering Conference,
2018.

[10] Loveless, A., “On TT Ethernet for Integrated Fault-Tolerant Spacecraft Networks.” Proceedings of the AIAA Space Conference
and Exposition, 2015.

[11] McComas, D., Wilmot, J., and Cudmore, A., “The Core Flight System (cFS) Community: Providing Low Cost Solutions for
Small Spacecraft,” Proceedings of the 30th AIAA /USU Conference on Small Satellites, 2016.

17

https://www.fbo.gov/spg/NASA/GRC/OPDC20220/80GRC018R0005/listing.html
https://www.fbo.gov/spg/NASA/GRC/OPDC20220/80GRC018R0005/listing.html


[12] Mathur, A., Deb, S., and Pattipati, K., “Modeling and Real-Time Diagnostics in TEAMS-RT,” Proceedings of the American
Control Conference, 1998.

[13] Aaseng, G., Barszcz, E., Valdez, H., and Moses, H., “Scaling Up Model-Based Diagnostic and Fault Effects Reasoning for
Spacecraft,” Proceedings of the AIAA Conference on Space Operations, 2015.

[14] McCann, R., Spirkovska, L., and Smith, I., “Putting ISHM Capabilities to Work: Development of an Advanced Caution and
Warning System for Crewed Spacecraft.” Proceedings of the AIAA Modeling and Simulation Technologies Conference, 2013.

[15] Narasimham, S., and Brownstone, L., “HyDE - A General Framework for Stochastic and Hybrid Model - Based Diagnosis,”
Proceedings of the 18th International Workshop on the Principles and Practices of Diagnosis, 2007, pp. 162 – 169.

[16] Achterberg., T., “SCIP: solving constraint integer programs.”Math. Prog. Comp., Vol. 1, 2009, pp. 1 – 41.

[17] Verma, V., Jónsson, A., Pasareanu, C., and Iatauro, M., “Universal Executive and PLEXIL: Engine and Language for Robust
Spacecraft Control and Operations,” Proceedings of the AIAA Space Conference, 2006.

[18] Greenwood, Z., Abney, M., Perry, J., Miller, L., Dahl, R., Hadley, N., Wambolt, S., and Wheeler, R., “Increased Oxygen
Recovery from Sabatier Systems Using Plasma Pyrolysis Technology and Metal Hydride Separation,” Proceedings of the 45th
AIAA International Conference on Environmental Systems, 2015.

18


	Introduction
	Advanced Technology Development
	 Modular Power System and Autonomous Power Controller
	 Avionics and Software
	Avionics Architecture
	Core Flight System

	 Habitat Autonomy Technology
	Fault Management
	Vehicle Systems Manager (VSM)

	 Systems Engineering and Integration
	Testing and Fault Injection

	 Demonstration of Capability
	Habitat Simulation
	 Spacecraft Operational Constraints
	Demonstration Scenarios

	Lessons Learned and Next Steps
	Acknowledgements

